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ABSTRACT

Trained on internet-scale video data, generative world models are increasingly rec-
ognized as powerful world simulators that can generate consistent and plausible
dynamics over structure, motion, and physics. This raises a natural question: with
the advent of strong video foundational models, might they supplant conven-
tional vision encoder paradigms for general-purpose multimodal understand-
ing? While recent studies have begun to explore the potential of world models on
common vision tasks, these explorations typically lack a systematic investigation
of generic, multimodal tasks. In this work, we strive to investigate the capabilities
when world model priors are transferred into Vision-Language Models (VLMs):
we re-purpose a video diffusion model as a generative encoder to perform a sin-
gle denoising step and treat the resulting latents as a set of visual embedding. We
empirically investigate this class of models, which we refer to as World-Language
Models (WorldLMs), and we find that generative encoders can capture latents
useful for downstream understanding that show distinctions from conventional
encoders. Naming our best-performing variant Dynamic Vision Aligner (DyVA),
we further discover that this method significantly enhances spatial reasoning abili-
ties and enables single-image models to perform multi-frame reasoning. Through
the curation of a suite of visual reasoning tasks, we find DyVA to surpass both
open-source and proprietary baselines, achieving state-of-the-art or comparable
performance. We attribute these gains to WorldLM’s inherited motion-consistency
internalization from video pre-training. Finally, we systematically explore exten-
sive model designs to highlight promising directions for future work. We hope our
study can pave the way for a new family of VLMs that leverage priors from world
models and are on a promising path towards generalist vision learners.
Project page: https://dyva-worldlm.github.io/.

Figure 1: What will happen? From reasoning to dynamic intuition — comparing how VLM and
WorldLM understand and predict real-world events.
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Figure 2: Our analysis is structured around three dimensions: (i) Paradigm comparison between
static and generative encoders (e.g., SigLIP vs. SVD); (ii) Benchmark diagnosis, revealing world
model latents’ strength (e.g., spatial/multi-frame reasoning) and weaknesses (e.g., language-heavy
tasks); and (iii) Design-space exploration, probing different auxiliary encoders, resolutions, and
training recipes to understand how world-model features aid visual understanding.

1 INTRODUCTION

World models, originally proposed in cognitive science to explain how humans predict and plan in
their environments (Tolman, 1948), have recently emerged as powerful tools in machine learning.
Generative world models, such as video generation models (VGMs) (Agarwal et al., 2025b; OpenAI,
2024; Wan et al., 2025; Hu et al., 2023; Blattmann et al., 2023; Yang et al., 2025b; Guo* et al., 2023;
2025; Chen* et al., 2025) that are trained on internet-scale video data, encode strong priors over
objects, spatial layouts, and dynamics. These priors allow them to predict plausible future scenarios
that are consistent in 3D structure and physically coherent in motion.

However, a largely overlooked implication of World Models is that the ability to generate coher-
ent futures signals a form of semantic understanding of visual dynamics; this difference between
visual generation and understanding has shaped a decade of representation learning. This suggests
that world models can be more than generators—they may serve as transferable encoders that en-
rich downstream tasks with spatial, temporal, and predictive signals. As a result, recent work has
attempted to use video generation backbones for visual perception tasks (Acuaviva et al., 2025;
Wiedemer et al., 2025).

In this work, we ask a foundational question: can generative models surpass current vision under-
standing paradigms for generic, multimodal understanding?

To empirically investigate the current capabilities of video generation models, we introduce a sim-
ple yet effective framework applying them to Vision–Language Models (VLMs). We specifically
explore this by evaluating the applicability of predictive world models on a generic multimodal task
- Visual Question Answering (VQA) — to assess their broader potential as generalizable vision
encoders. Currently, mainstream VLMs primarily rely on ViT-based encoders such as CLIP (Rad-
ford et al., 2021), SigLIP (Zhai et al., 2023), and DINO (Caron et al., 2021; Oquab et al., 2024),
which extract visual semantics from image patches and are then projected as visual tokens into
language backbones. While these encoders are semantically aligned, they are limited by temporal
reasoning and weaken spatial grounding when multiple views or sequential cues are present. On the
other hand, we re-purpose a world model (Stable Video Diffusion, or SVD) as a Generative En-
coder. Our core mechanism is to extract latent features from a single denoising step of its U-Net.
This single step, we hypothesize, captures the low-dimensional world-dynamics prior sufficient for
downstream understanding. These dynamics-aware latents are then fused with static image features
(e.g., SigLIP) and projected into the Large Language Model (LLM). The design is very efficient: all
encoders remain frozen, with only lightweight projectors and the LLM being trained.
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To this end, we conduct a systematic investigation comparatively evaluating this class of models,
which we refer to as World-Language Models (WorldLMs). Our findings are as follows:

• Shift in Reasoning Paradigm. The generative prior alters the model’s reasoning process.
It moves beyond describing static content to envisioning dynamic possibilities.

• Zero-shot Multi-Frame Adaptation. Trained only on single images, the generative en-
coder enables emergent multi-frame reasoning without multi-image training. On multi-
frame visual reasoning, DyVA achieves state-of-the-art or comparable performance with
flagship models such as Qwen2.5-VL (Bai et al., 2025) and GPT-4o (OpenAI et al., 2024).

• We empirically identify the regimes where video priors help. Our ablations and diag-
nostics separate the settings in which SVD latents strengthen spatial reasoning from those
where they dilute semantic grounding, guiding future designs.

Our best-performing WorldLM variant, Dynamic Vision Aligner (DyVA), exemplifies this paradigm
shift. In zero-shot evaluations on challenging multi-frame reasoning benchmarks, DyVA decisively
surpasses even proprietary models, for instance, a 28.3% lead on the MindCube benchmark over
the GPT-4o model. This provides strong evidence that the ability to predict is a powerful, perhaps
essential, foundation for stronger representation learning.

As shown in Figure 2, we systemically organize our investigation revolving around three pillars:

Paradigm comparison. World-model encoders versus static encoders reveal distinct strengths:
world-model latents benefit spatial and multi-frame reasoning, while static encoders excel on
semantics-heavy benchmarks.

Benchmark diagnostics. Through curated evaluation sets including MindCube Yin et al. (2025),
SAT-Bench Ray et al. (2024), VSR Liu et al. (2023a), we find that DyVA surpasses both open-
source and proprietary baselines on out-of-domain tasks, achieving state-of-the-art performance
on MindCube. Given that SVD is pre-trained on temporally coherent video–text pairs, we show
that dynamics-aware latents particularly boost object relations, cross-view understanding, and multi-
frame spatial reasoning, while offering less gain on tasks requiring stronger language priors.

Design-space exploration. We analyze different encoder setups to identify when predicted latents
help or hinder performance and analyzing the co-training of U-Net and VAE layers with text loss,
laying the groundwork for a new class of WorldLMs exploiting world-model priors.

Figure 3: WorldLM Pipeline. A SigLIP encoder extracts semantic features from the input image.
Concurrently, a Generative Encoder generates dynamic state tokens to capture temporal changes,
using evenly spaced keyframe slots. All visual tokens are projected into a shared embedding space,
concatenated with text tokens, and then fed into the LLM decoder.

3



Can World Models Benefit VLMs for World Dynamics?

2 PRELIMINARY

We first lay a groundwork for our analysis with: 1) a framework to incorporate the dynamic features
of a world model into a multimodal language model (which we term WorldLM), 2) a training recipe,
and 3) an implementation of inference supporting both single and multi-image datasets.

Framework. Given an input image ximg ∈ RH×W×C and a text prompt uprompt, traditional
VLMs such as LLaVA (Liu et al., 2024), QwenVL (Bai et al., 2025), InternVL (Chen et al., 2025),
DeepSeekVL (Lu et al., 2024), and Prismatic-VLMs (Karamcheti et al., 2024), process the input
with an architecture consisting of three core components:

• Semantic Vision Encoder. ximg is processed by a frozen pre-trained ViT-based (Doso-
vitskiy et al., 2021) encoder Vω , e.g., SigLIP (Zhai et al., 2023), to extract a sequence of
feature embeddings pimg = Vω(ximg), where pimg ∈ RL×dvision , where L is the token
length and dvision refers to the vision feature dimension.

• Projector. The visual features pimg are subsequently mapped into the language model’s
embedding space by a projector Fψ . This yields a sequence of embeddings eimg =
Fψ(pimg), where eimg ∈ RL×dtext , where dtext is the text feature dimension. The pro-
jector is typically implemented as a simple MLP with GELU activations (Hendrycks &
Gimpel, 2023).

• LLM Backbone. Finally, the language model LMθ autoregressively generates the textual
output uout. It is conditioned on the concatenated sequence of the projected image features
eimg and the text prompt embeddings eprompt: uout = LMθ([eimg; eprompt])

On the other hand, in WorldLMs, we employ a Generative Encoder to extract dynamic visual infor-
mation and motion priors of the input image:

• Generative Encoder. We utilize Stable Video Diffusion (SVD) (Blattmann et al., 2023)
as our encoder. SVD consists of a VAE (Kingma & Welling, 2022) encoder ϕ and a U-
Net (Ronneberger et al., 2015) denoiser fθ. The input image ximg is first embedded by
VAE into the latent z0, which is then replicated T times to form the initial video latent
Z0. A single Euler integration step (Karras et al., 2022) is then applied to yield an updated
latent Z1 = Z0 + ∆σ fθ(Z0, σ0, c). Rather than rendering video frames, the final output
Dimg = Hiddenmid(fθ, Z1) is extracted from U-Net’s middle layers.

As shown in Fig. 3, semantic features pimg and dynamic features H̃ are projected by two sep-
arate projectors Psem and Pdyn into the LLM space, yielding Vs = Psem(pimg) ∈ RLs×d and
Vd = Pdyn(H̃) ∈ RLd×d. The fused sequence is V = [Vs;Vd] ∈ R(Ls+Ld)×d, which, together
with prompt embeddings Eprompt, is fed into the LLM backbone to autoregressively generate an-
swer tokens uout = LMθ([V ;Eprompt]). By fusing both streams, our WorldLM leverages static
semantics (from SigLIP) and dynamics-aware priors (from SVD) for multimodal reasoning.

Training recipe. We adopt the training strategy from Prismatic-VLMs (Karamcheti et al., 2024),
using single-stage training to align modalities and incorporate dynamic features: We jointly train
both the projectors and the LLM on a mixture of multimodal instruction datasets from LLaVA-
1.5 (Liu et al., 2023b), together with examples from established vision-language benchmarks (e.g.,
GQA (Hudson & Manning, 2019), TextCaps (Sidorov et al., 2020)), and language-only samples
from ShareGPT (ShareGPT, 2023). This training paradigm not only effectively aligns the represen-
tations of the generative encoder with the semantic space of the LLM but also improves its com-
positional generalization, allowing it to reason over both priors of motion and the static features.
Remarkably, the entire training process completes in only 10.3 hours on 16×A800 GPUs (≈165
GPU-hours) while achieving competitive performance, underscoring the efficiency of our approach.

Inference Protocol During inference, we employ SigLIP-so400m-patch14-224 as the semantic
vision encoder and SVD as the generative encoder with an image resolution of 448×448. Shown in
Fig. 3, for K input images, we allocate key frames using evenly spaced indices within the T -frame
latent tensor, replacing the corresponding slots with encoded keyframes before the Euler step, and
reuse the resulting latents as visual tokens. For the semantic vision encoder, only the first input image
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is encoded and concatenated with the input of the generative encoder. Unless otherwise specified,
the number of frames (T ) is set to 8 for both single-image and multi-image inputs.

Following the proposed framework, training setup, and inference principles, we train a family of
WorldLM models and designate the optimal ones in Dynamic Vision Alignment as DyVA.

3 PARADIGM COMPARISON

Do WorldLM Encoders Entail Visual Semantics Understanding?

In this section, we explore how world model latents can benefit visual understanding by contrasting
two differentiating encoder paradigms: (i) conventional static encoders such as CLIP and SigLIP that
prioritize multimodal semantic alignment, and (ii) WorldLM encoders based on video generation
models that generate dynamics-aware latents. We begin by comparing the most intuitive design to
test if WorldLMs can work, by directly replacing the CLIP vision encoder of LLaVA 1.5 (Liu et al.,
2024) with a Generative Encoder (e.g., SVD) following the WorldLM pipeline settings in Fig. 3.

Figure 4: Paradigm Comparison. We evaluate predicting 1, 4, 8, and 14 frames with a straight-
forward WorldLM setup. The radar chart (left) demonstrates that more frames boosts performance
across various tasks, especially in visual reasoning. The qualitative example (right) illustrates that
our WorldLM exhibits a distinct reasoning paradigm by envisioning, offering concise descriptions,
stronger spatial grounding, and more structured temporal foresight compared to LLaVA.

Generative encoders exhibit fundamentally different performance.

We begin with a motivating case study, illustrated in Fig. 4. Models leveraging static encoders,
such as LLaVA, adopt a reasoning paradigm. The output of LLaVA tends to be more descriptive,
describing in depth the details of the given image input. WorldLM, on the other hand, employs an
envisioning paradigm, which not only encodes the current state of the image, but it also performs
a prediction of plausible future conditions (e.g., “will drive away”, and “drive to the other rover”).
This case reveals an intrinsic difference between the two paradigms: VLM reasons by the given
image’s embeddings, whereas WorldLM attends to depict the embeddings of generated predictions.

Multi-frame capture more useful semantic features than Single Frame. The quantitative 4 com-
parison between using different numbers of generated dynamic latents shows its effect on down-
stream tasks. When the generated frames of the video prediction model increase from 1 to 14, we
see a general rising trend of performance on all tasks.

Meanwhile, the vanilla WorldLM performs great on spatial-reasoning tasks. Notably, the gains
are most pronounced on benchmarks requiring visual reasoning through space and time, such as
SeedBench, VSR, and TallyQA. This demonstrates the potential of using world models as dynamics-
aware encoders to allow VLMs gain a deeper and more grounded level of spatial understanding.

Limitations of WorldLMs. Despite the clear advantages in spatial reasoning, our empirical study
reveals a critical trade-off in Fig. 4, where its performance relative to LLaVA is much lower across
all tasks. The case study in Fig. 4 offers a qualitative explanation for this phenomenon. While our
world model correctly grounds the spatial structure of the scene (e.g., “rocket on the ground... large
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rocket in the distance”), it hallucinates the semantic identity of the objects, misidentifying the Mars
lander and rover as “rockets”. Therefore, we believe that using a world model as an encoder has
the potential to enhance predictive and spatial reasoning tasks, but requires further improvement to
ensure basic semantic capabilities.

4 BENCHMARK ANALYSIS: INVESTIGATION

4.1 EXPERIMENTAL SETUP

We document the configurations, datasets, and training protocols underlying our study. Unless oth-
erwise noted, all settings use a 7B-parameter LLaMA-2 LLM backbone, with both SigLIP and
SVD encoders frozen during a single-stage instruction tuning. Training updates are restricted to
lightweight projection layers and the language backbone.

4.2 DATASETS AND EVALUATION TARGETS

Benchmarks vary widely in their emphasis on spatial grounding, temporal coherence, and semantic
understanding. To assess these dimensions, we curate a suite of open-source out-of-domain (OOD)
datasets on which our models have not been trained. This allows us to isolate the transferability of
world-model priors.

Single-image spatial reasoning. We evaluate on benchmarks that probe relational and spatial
understanding without temporal context, including VSR (Liu et al., 2023a), TallyQA (Acharya
et al., 2018), SpatialMM-Obj (Shiri et al., 2024), and 3DSR-Bench-real (Ma et al., 2025). Base-
lines include LLaVA-1.5 (Liu et al., 2024), Prism-SigLIP-7B (Karamcheti et al., 2024), and Prism-
DinoSigLIP-7B (Karamcheti et al., 2024).

Multi-image and temporal reasoning. To assess robustness to sequential inputs and temporal
structure, we use MMSI-Bench (Yang et al., 2025a), SAT-Synthetic (Ray et al., 2024), and Mind-
Cube (Yin et al., 2025). These benchmarks require models to integrate cues across frames or view-
points, testing whether world-model latents can enable multi-frame reasoning. We compare against
both open-source and proprietary large-scale VLMs, including Qwen-2.5-VL-7B (Bai et al., 2025),
InternVL-2.5-7B (Chen et al., 2025), LLaVA-OneVision-7B (Li et al., 2024), and GPT-4o (OpenAI
et al., 2024). Note that all of the compared benchmarks are trained with multi-frame or video data,
whereas we train on single images only.

4.3 EXPERIMENTAL ANALYSIS AND INSIGHTS

Table 1: Performance comparison between DyVA and state-of-the-art methods on multi-image
benchmarks SAT Synthetic, MMSI-Bench, and MindCube. DyVA outperforms baselines in these
OOD tasks without training on multi-image datasets. The highest average values are in bold.

Model SAT Synthetic MindCube
Obj Move. Act. Seq. Act. Cons. Goal Aim Persp. Avg. Rot. Among Around Avg.

Qwen2.5-VL-7B 79.29 84.70 47.83 25.84 35.17 53.16 38.76 29.50 21.35 29.26
Intern2.5-VL-8B 77.74 55.49 53.74 15.03 32.61 48.06 18.68 36.45 18.20 18.68
LLaVA-OneVision-7B 71.10 21.64 49.85 31.76 35.43 43.24 36.45 48.42 44.09 47.43
GPT-4o 61.50 33.20 47.60 67.50 37.50 49.40 40.17 29.16 38.81 38.81

DyVA-7B 49.15 57.81 49.25 53.38 40.44 49.51 37.70 43.10 49.00 44.62
DyVA-Qwen2.5-7B 78.83 62.13 49.85 51.86 41.72 55.24 37.20 39.10 51.70 49.80

Model
MMSI-Bench

Positional Relationship Attribute Motion MSR Avg.
Cam–Cam Obj–Obj Reg–Reg Cam–Obj Obj–Reg Cam–Reg Means Appr Cam Obj

Qwen2.5-VL-7B 32.3 27.7 29.6 32.6 24.7 32.5 26.6 27.3 16.2 31.6 30.3 28.70
Intern2.5-VL-8B 24.7 24.5 24.7 25.6 29.4 26.5 25.0 18.2 20.3 39.5 25.8 25.90
LLaVA-OneVision-7B 20.4 33.0 29.6 29.1 25.9 30.1 29.7 25.8 18.9 34.2 11.6 24.50
GPT-4o 34.4 24.5 23.5 19.8 37.6 27.7 32.8 31.8 35.1 36.8 30.8 30.30
DyVA-7B 21.5 30.9 25.9 31.4 27.1 20.5 35.9 24.2 13.5 19.7 24.2 24.90
DyVA-Qwen2.5-7B 15.1 33.0 25.9 33.7 35.3 30.1 32.8 25.8 17.6 27.6 29.3 28.00
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Table 2: Performance comparison of DyVA variants against baselines on various single-image
spatial reasoning benchmarks, including VSR, TallyQA, SpatialMM-Obj, and 3DSR-Bench-real.
These are Out-of-Domain tasks where models are not trained and perform zero-shot inference. Our
results surpass all baseline models. Highest values are highlighted in bold.

Models Data VSR
Topo. Prox. Proj. Direc. Adj. Orien. Unall. Avg.

LLaVA-v1.5-7B 558k+665k 52.24 50.00 54.77 50.00 50.86 48.98 57.50 52.94
Prism-SigLIP-7B 665k 67.48 62.50 65.63 66.67 55.17 55.10 67.50 64.97
Prism-DinoSigLIP-7B 665k 71.34 59.38 65.63 64.29 53.45 48.98 52.50 65.46

DyVA-7B 665k 68.90 68.75 66.74 66.67 66.38 61.22 57.50 67.10
DyVA-Qwen2.5-7B 665k 66.67 71.88 68.74 61.90 62.93 40.82 55.00 65.63

Models
TallyQA SpatialMM-Obj 3DSR-Bench-real

Avg. 1-obj 2-obj Avg. H. L. O. M. Avg.
LLaVA-v1.5-7B 58.74 57.37 44.87 48.91 55.42 57.82 26.09 39.42 45.02
Prism-SigLIP-7B 62.25 62.54 46.77 51.86 52.28 60.22 27.23 42.17 46.55
Prism-DinoSigLIP-7B 62.93 58.56 47.72 51.22 56.85 59.42 27.23 38.97 45.82

DyVA-7B 59.47 54.78 46.29 49.03 53.71 57.60 27.23 40.80 45.41
DyVA-Qwen2.5-7B 68.11 62.74 47.53 52.44 52.57 54.51 27.23 49.60 47.16

Tab. 1 and 2 present representative results under both single and multi-image settings. This framing
allows us to disentangle how world-model features contribute across different reasoning regimes.

As presented in Tab. 1 and 2, we evaluate the OOD performance of DyVA-7B and DyVA-Qwen-
2.5-7B. We examine DyVA’s performance relative to existing vision-language models across various
spatial reasoning tasks. The key differences lie in DyVA’s use of Generative Encoders versus base-
lines that use only standard visual embeddings. Below, we discuss the strengths and weaknesses of
DyVA in each benchmark category, drawing on the reported results of these tasks and models.

DyVA can enable single-image trained WorldLMs to perform multi-image tasks exceptionally
well. As in Tab. 1, our best variant can perform strongly in multi-frame spatial understanding tasks.

Specifically, on the MindCube benchmark (Tab. 1), DyVA-Qwen2.5-7B achieves a new state-of-
the-art performance with the highest overall score (49.8% vs. 47.4% for the runner-up baseline).
It particularly excels in “Around” (rotating viewpoint) tasks (51.7% vs. 44.1%) and matches or
slightly exceeds baselines on “Rot” tasks (37% vs. 36%). These results suggest that DyVA latents
significantly aid in tasks requiring mental rotation and perspective-taking, likely because they en-
code cross-view consistency. Specifically, these margins are consistent with the motion-consistency
priors inherited from SVD’s pre-training on LVD-F video–text pairs Blattmann et al. (2023) that
include how an object may appear from different angles.

This achievement is especially noteworthy considering the training efficiency. Compared to base-
lines where LLaVA-One-Vision is trained on 4M multi-frame images, Intern 2.5-VL is pretrained
with 16.3M samples, including multi-image and video data, and Qwen-2.5-VL is also pre-trained
with a variety of data comprising videos and multi-images. These baselines also have several com-
plex methods for image preprocessing, such as patchifying (Li et al., 2024), processing at different
fps (Bai et al., 2025), and high-res processing (Chen et al., 2025). In contrast, we trained our DyVA
model using only the most basic processing methods with minimal amount of data.

Our modest training budget and intuitive multi-image inference method suggest that world model
latents strongly enhance the spatial understanding on multi-image benchmarks. We also believe that
the fusion of SVD with SigLIP is a key factor that directly improves multi-image reasoning abilities.

DyVA excels in handling spatial relations, counting and object queries, and 3D Scenes. In
Single-Image Spatial Reasoning, DyVA’s world-model features boost performance on tasks em-
phasizing geometric and relational spatial reasoning (orientation, adjacency, multi-object spatial
layouts), reflecting improved 3D awareness.

7



Can World Models Benefit VLMs for World Dynamics?

1. Visual Spatial Relations (VSR): DyVA (SigLIP+SVD) achieves the highest average score
(67.1%) across VSR subtasks (topology, proximity, projection, direction, adjacency, orientation, un-
aligned), outperforming the SigLIP-only baselines (64.9–65.5%) in Tab. 2. In particular, DyVA sig-
nificantly improves orientation reasoning (61.2% vs 55–49% for baselines) and proximity/topology,
suggesting it can better encode spatial layouts and object alignment.

2. Counting and Object Queries (TallyQA, SpatialMM-Obj): On TallyQA (visual counting),
DyVA-Qwen2.5 excels (68.1% average), well above Prismatic baselines (62–63%) and LLaVA
(58.7%)Tab. 2. For the SpatialMM-Obj task (single- vs multi-object queries), DyVA-Qwen2.5 again
slightly outperforms others (52.4% vs 51.8% baseline) on the combined 1- and 2-object questions.

3. 3D Scene Reasoning (3DSR-Bench-real): This benchmark measures 3D spatial and depth
understanding in real images. Notably, DyVA greatly improves the “Multiple objects” (M) subset
(49.6% vs 40% for baselines). This aligns with the conception that SVD latents capture implicit
depth and occlusion cues learned from video modeling.

Limitations and Areas for Improvement. Despite its strengths in spatial reasoning, DyVA exhibits
certain limitations, particularly on tasks that rely heavily on semantic language priors, non-canonical
object arrangements, or temporal sequence understanding.

1. Weakened Performance on Language-Intensive Tasks: The fusion of world-model tokens can
dilute the semantic precision required for certain tasks. As shown in Tab. 3, on benchmarks such as
VQAv2 and TextVQA, which demand strong language priors and OCR capabilities, DyVA under-
performs compared to SigLIP-only baselines. This suggests that while SVD latents enhance spatial
awareness, they can interfere with fine-grained semantic grounding and text recognition, where the
original visual features are more direct and precise.

2. Bias Towards Canonical Scene Structures: As previously noted in the VSR analysis, DyVA’s
performance drops significantly on the “Unaligned” subtask (57.5% vs. 67.5%). This indicates
that embedding world-model context can be detrimental when objects lack canonical alignments.
The model’s latent prior appears biased toward common or expected scene structures, hindering its
ability to reason about novel or unusual spatial configurations.

3. Less Reliable Sequential and Temporal Reasoning: The current SVD latents are less effective for
understanding dynamic sequences. This is evidenced by a large performance drop in SAT Action
Sequence and mixed results on MMSI. These outcomes suggest that the latents, while powerful for
static scenes, are less reliable for predicting discrete action orders or interpreting rapid changes over
time, marking a clear area for future improvement.

5 DESIGN-SPACE EXPLORATION: WHY DYVA WORKS

Generative Encoders rely on both dynamic frames and text-aligned semantics as support.

Building on the strong spatial performance demonstrated in both single-image and multi-image tasks
in our experiments, we further analyze two key design axes to investigate the sources of WorldLM’s
benefits: (i) the choice of different semantic vision encoders, and (ii) the potential of leveraging
text-loss to supervise the joint-training of VAE and U-Net in SVD.

5.1 WHY DO VAE, DINO, SVD-ONLY NOT WORK, BUT SIGLIP+SVD DOES?

To investigate the respective roles of the generative encoder and the semantic vision encoder within
WorldLM, we conduct a two-stage ablation study. First, in a setting without the semantic vision
encoder, we decouple the generative encoder into its component VAE and the complete generative
encoder architecture. We then train and comparatively evaluate the performance of two distinct
encoding approaches: one employing only the VAE for encoding and the other utilizing the en-
tire generative encoder (SVD). Second, while keeping the generative encoder fixed, we systemati-
cally substitute the backbone of the semantic vision encoder with various alternative architectures
to analyze its impact on the model’s overall performance. Our quantitative experimental results are
presented in Tab. 3.

Prediction Matters. The inference protocol for the SVD encoder is detailed in Sec. 2. A similar
inference process is employed when using VAE as the generative encoder. In contrast to extracting
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Table 3: Performance Comparison of SVD-based Vision Models. Benchmark scores across a set
of VQA, reasoning, and spatio-temporal tasks. All experiments use the LLaMA-2 7B backbone. The highest
score in each column is marked in bold, and the second-highest is underlined. Align: one-time alignment on
LAION-558k Schuhmann et al. (2022). F1: one-time finetuning. Fused: 3-layer MLP projector.

Model Align VQAv2 GQA VizWiz VSR POPE TallyQA SeedBench SpatialMM 3DSR

VAE-Only × 46.98 40.53 38.90 52.04 66.42 39.55 38.18 38.81 44.15
✓ 50.70 43.26 48.67 52.29 60.80 42.48 41.53 37.3 43.43

SVD-Only × 63.51 55.18 44.95 57.93 82.38 49.75 50.15 42.03 42.93
✓ 61.82 50.20 50.60 53.60 75.61 53.27 52.55 40.60 43.50

U-Net Trainable ✓ 63.36 54.49 50.24 57.93 79.88 51.51 52.76 40.80 43.43
U-Net & VAE Trainable ✓ 60.99 49.80 50.17 52.53 77.08 53.75 52.33 39.50 44.00

Dino + SVD × 68.77 58.50 50.73 62.52 85.25 52.78 55.19 44.79 44.26
✓ 68.44 55.57 51.13 59.41 85.54 54.15 56.49 43.40 45.07

SigLIP + SVD × 75.36 61.52 55.95 67.10 85.97 59.47 66.61 49.03 45.40
✓ 73.63 58.89 54.63 61.62 84.37 56.98 62.09 45.40 45.49

U-Net Trainable ✓ 74.02 59.86 54.60 62.27 85.61 57.42 63.39 45.95 44.11

CLIP + SVD × 73.51 59.67 53.14 64.89 85.80 58.25 65.45 46.07 46.13
✓ 72.99 60.74 55.89 65.38 85.80 55.37 65.33 46.70 44.42

DinoSigLIP + SVD × 74.28 60.16 54.13 64.81 87.27 57.42 64.54 48.65 44.15
✓ 72.42 59.28 54.47 61.29 86.75 54.98 61.54 47.00 45.14

features from the layer before the middle block of U-Net, we directly use the features encoded by
the VAE. To align the feature dimensionality with that of the SVD, we prepend several convolutional
layers to the projector. As evidenced by our experimental results in Tab. 3, the model employing only
VAE for encoding exhibits a performance degradation across nearly all benchmarks when compared
to models using SVD. This finding underscores the significance of the predicted dynamics for the
WorldLM.

WorldLMs need a text-aligned encoder. Although SigLIP (Zhai et al., 2023) has recently shown
dominant performance as an emerging vision encoder in current state-of-the-art VLMs, such as
LLaVA-One-Vision (Li et al., 2024) and Prismatic-VLM (Karamcheti et al., 2024), in this study,
we investigate the respective roles of SigLIP, CLIP (Radford et al., 2021), DINOv2 (Oquab et al.,
2024), and a combined DINO-SigLIP architecture as the semantic vision encoder. To ensure a fair
comparison, we selected the ViT-L version for each model, all configured for a 224 × 224 input
resolution. Furthermore, we adopted a consistent image processing strategy, which involves scaling
and then cropping all images to uniform resolutions.

As demonstrated in Tab. 3, models that utilize SigLIP (including the DINO-SigLIP combination) or
CLIP as the semantic vision encoder significantly outperform the model using DINOv2. Further-
more, when considering the aforementioned investigation of the generative encoder, the model with
DINOv2 as the semantic vision encoder shows better performance than the generative-encoder-only
architecture.

This leads to a key insight: for our WorldLM framework that is trained with text-loss supervision,
in addition to predicted dynamic features, DyVA requires supplementary visual-semantic informa-
tion from a model pre-trained on language-vision tasks (i.e., a text-aligned model). This insight
also paves the way for future explorations: Can the generative encoder alone suffice to replace the
semantic vision encoder? And is text-loss supervision the answer to WorldLM training?

5.2 CAN DYVA BENEFIT FROM U-NET & VAE TRAINING ON TEXT-LOSS?

We investigated the efficacy of fine-tuning the SVD’s core components (U-Net and VAE) using only
a text-loss signal. Our experimental results indicate this strategy is largely ineffective.

Text supervision failed to help VQA tasks. As shown in Tab. 3, making only the U-Net trainable
yields inconsistent and marginal performance changes, while allowing both the U-Net and VAE to
be trainable leads to a distinct and widespread degradation in performance across the benchmarks.

This suggests the high-level semantic supervision from the text-loss is ill-suited for adapting the low-
level generative priors of these components. This constitutes one of the limitations of our current
work. An alternative approach, inspired by methods like RAPE-E (Leng et al., 2025), involves
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aligning the features from the VAE and U-Net with the visual features from a semantic encoder such
as DINOv2. Exploring such an alignment strategy is a promising direction for future research.

6 DISCUSSIONS AND OUTLOOKS

Over the recent past, video foundation models have demonstrated remarkable performance in key ar-
eas such as consistency and content generation. Through our empirical investigation on multimodal
general tasks through a VLM framework, we find that:

(1) Paradigm comparisons reveal that WorldLM latents are powerful: these latents enable effective
spatial and multi-view reasoning.

(2) Design-space explorations clarify which architectural choices benefit WorldLMs, while bench-
mark diagnostics explain where DyVA excels.

(3) WorldLM encoders unlock visual reasoning through leveraging SVD’s predictive pre-training
supplies transferable camera-motion and interaction priors, yet semantic gaps persist until the gen-
erative encoders are co-trained or better aligned with language signals.

Overall, we observe that WorldLM encoders offer a reliable pathway to stronger spatial and multi-
view reasoning, and scaling trends in video generation (Wiedemer et al., 2025; Chi et al., 2025)
suggest the semantic deficit may narrow as these models progress. Closing that gap for VLMs will
likely require tighter alignment between dynamics-rich latents and language-grounded objectives.

Outlooks. Promising next steps include: (i) exploring text-to-video generators as encoders to test
whether text-aligned priors further boost visual understanding; and (ii) designing specialized train-
ing that aligns generative latents with semantics without eroding their physical fidelity.
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OUTLINE

• Related Work (Section A): Reviews prior work in three key areas: (1) predictive World
Models, (2) diffusion-based Generalist Models for in-context learning, and (3) the applica-
tion of diffusion models to discriminative vision tasks.

• Model Formalization: Details our architecture, including:

– Static visual features from a SigLIP encoder (Eq. 1).
– Dynamic features from SVD U-Net hidden states (Eq. 2, 3).
– The fusion mechanism for static and dynamic tokens (Eq. 4).

• Training Hyperparameters: Specifies all training configurations, which are listed in Ta-
ble 4.

• Design Space Explorations: Presents key ablation studies, demonstrating:

– The model’s sensitivity to temporal frames over spatial resolution (Table 5).
– The rationale for our SVD feature fusion strategy, with comparative results in Table 6.

A RELATED WORK

A.1 WORLD MODELS

Various methods have been developed to learn predictive models of visual dynamics. Ha & Schmid-
huber (2018) proposed the original World Models framework, which learns a compressed latent
representation of an environment’s dynamics using generative RNNs (Ha & Schmidhuber, 2018).
Hafner introduced PlaNet (Hafner et al., 2018) and later Dreamer (Hafner et al., 2019), which use
latent space dynamics models trained on pixel observations for planning and control. More re-
cently, large-scale self-supervised video models have emerged. For example, Stability AI’s Sta-
ble Video Diffusion trains a high-capacity latent video diffusion model on vast video datasets for
high-quality text-to-video and image-to-video generation (Blattmann et al., 2023). Zhou (2024)
introduced DINO-WM, a world model that leverages pretrained DINOv2 patch features to enable
zero-shot goal-reaching via planning in feature space (Zhou et al., 2024). Meta’s V-JEPA 2 (Ass-
ran et al., 2025) and NVIDIA’s Cosmos platform (Agarwal et al., 2025a) provide video foundation
models that enable understanding, prediction, and planning from raw visual data.

A.2 GENERALIST MODELS

Recent work has explored using diffusion-based generative models for flexible multi-task and in-
context learning. Wang et al. (2023) presented Prompt Diffusion, a method that enables in-context
learning in diffusion models by conditioning on example input-output image pairs and a text prompt.
Geng et al. (2023) proposed InstructDiffusion, a unified framework that casts diverse vision tasks
as a pixel-space image manipulation guided by human instructions, learned via a diffusion process.
Bai et al. (2024) introduced a sequential modeling approach that represents images and annotations
as “visual sentences,” enabling training a single large vision model across many tasks without using
any language data. Lin et al. (2025) presented RealGeneral, which reformulates image generation as
conditional frame prediction analogous to LLM in-context learning: using video diffusion models
with novel modules, they unify multiple image-generation tasks (e.g., custom generation, canny-to-
image) within one framework. Recently, Bagel (Deng et al., 2025) further extends these ideas by
introducing novel techniques for improving the generalization and efficiency of multi-task learning
in diffusion models.

A.3 DIFFUSION MODELS ON VISION TASKS

Recently, diffusion models, having established state-of-the-art performance in image generation, are
increasingly being explored for their potential in discriminative vision tasks. This trend continues the
historical trajectory to leverage generative models for discriminative tasks (Hinton, 2007). Current
research has primarily followed three strategies for repurposing these models. The first utilizes
them as potent feature extractors, leveraging the rich internal representations from frozen, large-
scale text-to-image models for tasks like open-vocabulary panoptic segmentation (Baranchuk et al.,
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2022; Xu et al., 2023). The second employs them at inference time as probabilistic world models,
providing generative feedback to adapt discriminative models (Prabhudesai et al., 2023). A third
strategy directly leverages the model’s likelihood estimation capabilities, reframing classification as
an ”analysis-by-synthesis” problem to perform zero-shot classification without additional training
(Li et al., 2023). More recently, a fundamental paradigm shift has emerged, reformulating core
discriminative tasks as conditional denoising problems. This moves beyond using diffusion models
as auxiliary tools, making the generative process itself the core mechanism for prediction. Seminal
works in this area include DiffusionDet (Chen et al., 2022), which frames object detection as a
”noise-to-box” process of refining random boxes into precise detections, and DiffusionInst (Gu et al.,
2022), which formulates instance segmentation as a ”noise-to-filter” denoising process. This unified
”denoising-as-prediction” framework replaces task-specific architectures (e.g., RPNs, query-based
heads) with a single generative principle, marking a significant convergence and evolution in the
modeling of discriminative vision tasks.

B MODEL FORMALIZATION

VLM basics. A frozen SigLIP image encoder Esiglip maps an image x ∈ RH×W×3 to a grid of
patch embeddings S ∈ RN×Cs , where N is the number of patches and Cs the channel width. A
lightweight projector Psiglip : RCs → Rd aligns these to the LLM token space:

Vs = Psiglip(S) = MLPs(S) ∈ RN×d, (1)

where MLPs is a 3-layer MLP with GELU activations.

SVD for single-image→ video. Stable Video Diffusion (SVD) consists of a VAE encoder ϕ and
a U-Net denoiser fθ operating over a continuous noise scale σ (Karras et al.). Given a conditioning
image x, we compute a latent z0 = ϕ(x). To form a video latent tensor, we replicate z0 across T
frames:

Z0 = [z0, . . . , z0] ∈ RT×C×H′×W ′
.

Let σ0 denote the initial noise level from the SVD schedule. We perform one explicit Euler integra-
tion step over the ODE at σ0 (classifier-free guidance disabled):

Z1 = Z0 +∆σ fθ(Z0, σ0, c), (2)

where c denotes SVD conditioning (e.g., time/frame embeddings, text/image prompts), and ∆σ is
the step size.

We do not render frames; instead, we extract a U-Net hidden activation at the lowest spatial resolu-
tion on the downsampling path before the mid-block:

H ∈ RT×Hd×Wd×Ch = Hiddenpre-mid(fθ, Z1). (3)

Multi-image extension. For multiple images {xk}Kk=1, we first compute their latents {z(k)0 }.
These are inserted as keyframes within T frames at indices ik = round(linspace(0, T−1,K)).
We initialize Z0 with copies of z(1)0 and set (Z0)ik ← z

(k)
0 before the Euler step, yielding multi-

image-aware H .

Static+dynamics token fusion. We convert H into a token sequence by flattening spatial loca-
tions: L = HdWd, H̃ ∈ R(T ·L)×Ch . A projector Psvd : RCh → Rd maps these to the LLM token
space:

Vd = Psvd(H̃) = MLPd(H̃) ∈ RM×d, (4)

where M = T · L.

The SigLIP tokens V̂s (Eq. 1) are concatenated with V̂d to form the visual sequence:

V = [V̂s; V̂d].

.
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C TRAINING HYPERPARAMETERS

We adopt the hyperparameters in Table 4 for all our models (for both DyVA-7B and DyVA-Qwen2.5-
7B).

Table 4: Training Hyperparameters
Hyperparameter Value
Batch Size 128
Max Gradient Norm 1.0
Weight Decay 0.1
Learning Rate 2e-5
Optimizer AdamW
Scheduler Warmup & Cosine Decay
Warmup Ratio 0.03

D MORE DESIGN SPACE EXPLORATIONS

WorldLM is sensitive to temporal information but demonstrates robustness to spatial reso-
lution. This dual characteristic is evident from our ablation studies. First, as detailed in Table 5,
increasing the number of input frames from 1 to 14 yields a consistent and significant improvement
across most benchmarks, such as VQAv2 (59.38 to 61.73). This highlights the model’s proficiency
in leveraging richer temporal context. Conversely, the impact of spatial resolution appears marginal.
By comparing the results in Table 5 (at 576×1024 resolution) with those in Table 3, we find that
variations in resolution do not lead to substantial performance changes. These combined findings
suggest that our model architecture prioritizes temporal patterns over high-frequency spatial details
for the evaluated tasks.

Table 5: Model Performance Across Different Frame Numbers. These are DyVA with SVD only
encoders using a image resolution of 576× 1024

Frames Pretrain Tuning VQAv2 GQA VizWiz VSR POPE TallyQA SeedBench SpatialMM-Obj 3DSR-Bench-real
1 558k 665k 59.38 47.75 48.74 52.12 75.74 50.97 51.12 38.81 45.40
4 558k 665k 60.10 47.36 46.24 53.19 77.60 50.68 52.24 42.48 45.67
8 558k 665k 60.80 48.63 50.25 52.20 78.15 51.46 52.81 37.98 46.32
14 558k 665k 61.73 49.71 38.68 53.43 78.80 52.19 53.28 39.78 46.32

Fusing SVD latents after the U-Net’s middle block substantially improves performance over
the baseline fusion strategy. We further explore the optimal strategy for integrating SVD-derived
temporal latents into the model architecture. Specifically, we compare our baseline DyVA-SVD
model with a variant, DyVA-SVD-Post-MiddleBlock, which injects the latents after the U-Net’s
middle block. The results, presented in Table 6, indicate that the Post-MiddleBlock fusion strategy
yields significant performance gains across most benchmarks. Notably, we observe substantial im-
provements on GQA (+4.1), VSR (+4.09), and POPE (+4.56), strongly advocating for this modified
fusion approach and highlighting the critical impact of architectural choices in temporal feature in-
tegration. However, given the absence of across-the-board performance gains, and in consideration
of inference efficiency, we ultimately adopted the ”pre-mid” implementation.

Table 6: SVD vs. SVD-MiddleBlock. Comparison of different fusion strategies using SVD latents.
Model VQAv2 GQA VizWiz VSR POPE TallyQA SeedBench Spatial 3DSR

SVD-Only 61.82 50.20 50.60 53.60 75.61 53.27 52.55 40.60 43.50
SVD-Only-Post-MiddleBlock 62.86 54.30 51.41 57.69 80.17 51.36 52.50 41.13 43.84
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